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NUMERICAL SOLUTION OF THE PROBLEM OF HEAT
AND MASS TRANSFER IN A MOIST POROUS BODY

A, N. Oblivin and V. 8. Kuptsova UDC 536.242

A system of controlling equations is derived. The method of finite differences is used to obtain
numerical solutions for the temperature distributions, the moisture content, and the pressure
of the air — vapor mixture in a porous body during contact heating.

Heat and mass transfer in a two-dimensional moist porous body during contact heating and molding are
discussed. The nonstationary heating of a porous body from a molding surface at constant temperature Tis
leads to the vaporization of the moisture in the skeleton and to the formation of an air — vapor mixture in the
pores which moves toward the free (permeable) surfaces of the body. The molding process is considered
complete when the porous body reaches a given temperature and moisture content.

The motion of the air — vapor mixture in a porous two-dimensional body is described by Darcy's filtra-
tion law [1] in the form

- dp ap
oy = —k, —and  [lpy = — R, —, 1
P s p Y 3y @)
where II is the volume and surface porosity of the body.

According to the accepted mathematical model of an elementary volume of a porous body shown in Fig.
1, the equation for the transport of the air — vapor mixture can be written in the form

dp Ao apé
|/ 0= L 7 )= — 2
( ot Ox oy ) PPy — 1y @

in which
p, = 0,RT, _ @)
where

=R Pv L p p
R=Rvey +Ra(1 pv)_R";LjLRa(I—_;L)' @

It is assumed that vaporization and condensation of moisture occur at the pore surfaces and that the moisture
in the system of capillary channels of the skeleton is in the liquid state at the skeleton temperature Tgi. It is
assumed that the mass transfer rate inthe bulk of the body is proportionalto the difference between the satu-
rated vapor pressure at the temperature Tgy and the partial pressure of the vapor py.

The moisture content in the skeleton is characterized by W, and its local time rate of change is de-
scribed by the moisture content equation

0
<1—m—a‘f— =B (Py— ). )
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Fig. 1. Model of matter (a) and heat transfer (b) in a porous body.

The equation for the transport of vapor in the pore system is similar to Eq. (2) and has the form

doy Jpyit dpyv
i ? = —p).
( Br g S ay) B(py, — py)

Using Eq. (2) this equation can be rewritten in.the form

ap Ip ap :
n (p =7 T eu oo v ay)—“_p )BlAy — Py (6)

where p = py/0 = py/p is the dimensionless relative partial pressure of the vapor in the mixture.

We return to the model of an elementary volume of a porous body (Fig. 1b) to describe the heat-
transfer process. Heat transfer in the skeleton requires taking account of conduction and the thermal
effects accompanying the vaporization and condensation processes on the pore surfaces and is described
by the equation

G, , . 02T, 0T,
(1= 11) — ey + emd¥) Ty, = (1—17) (xx oty 6;:‘ )+qsk. )

Here qSk is the total thermal effect of the interaction of the air — vapor mixture and the skeleton, and it
can be interpreted as the volumetric heat release rate consisting of the four components
o= g+ g+ g+ ®
where
¥ =al—T) (©)
is the volumetric heat flux density due to convective heat transfer at the pore surfaces, where « is the
volumetric heat-transfer coefficient; it depends on the mass flux pw through the pores, where
w=ViELE, (10)
k
g5 =Bl —n,)r (11)

is the heat release rate at the pore surfaces resulting from the condensation of vapor (for evaporation
when pgy > py, q2sk < 0; i.e., the skeleton loses energy);

W1
g =BT —Ty) o (oy—hy +12,= 2, ) a2)

is the heat release rate from the cooling of vapor from the temperature T of the mixture to the temi ra-
ture Tgy of the skeleton before condensing on the pore surfaces. If T < Tgg, during condensationg§
and heat is absorbed by the vapor before condensmg, if there is no condensation py = pgy and q3k = 0;

4 =ﬂ<pv.—psv)cmg‘sk (13)

is the rate of heat input to the skeleton (or output for py < pgy) as a result of the increase (decrease) of
the heat content during the increase (decrease) of the moisture content of the skeleton.

After substituting Eqs. (8), (9), (11),(12),and (13) into the right-hand side of Eq. (7), using (5),
and making some transformations, we obtain
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Cd—m (s PT Ty
_(1_17)(x,c o, T >+

T =T+ bR, =R+ 4RI Ty — (= b, + 1o~ ) 14)

Heat transfer inthe pores is determined by taking account of convection and the thermal effects ac~
companying vaporization and condensation on the pore surfaces, If the available heat per unit volume of
the air — vapor mixture is charactenzed by the heat content h, the heat-transfer equation for the mixture
takes the form

dph Oph 0
m( ) = 15)
ox oy

The overall thermal effect of the interaction of the skeleton and the air — vapor mixture q can be separated
into the following three components:

=g+ ¢+ g5 1e)
where
g =a(Tx—T) (17

is the volumetric heat flux density due to convecﬁve heat transfer at the pore surfaces:

go =B (T — ) ( —p,Flp,—n,D 18)

is the heat release rate resulting from the cooling of vapor from the skeleton temperature Tgk to the tem-
perature of the mixture T after vaporization at the pore surfaces (if T > Tgk during vaporization q, < 0;
i.e,, the mixture transfers energy to the heating of the vapor from the vaporization temperature Tgk to
the temperature T of the mixture, and when there is no vaporization py = pgy and g, = 0);

3 =B, —p)h, . (19)

is the rate of heat input to the mixture (or loss if pgy < py) 2s a result of mass transfer during vaporization
{(or condensation) of moisture onthe pore surfaces, where hy is the heat content of the vapor at the temper-
ature of the mixture T,
After substituting Eqs. (16)-(19) into the right-hand side of (15) and using (2), we obtain
oh oh '
I ( on

P‘&"J‘Pu'é;‘rpv‘a;') a(nk-*T)+6(psv—p (hy _‘P)+Q15(Tsk_T) (psv Py +1pgy—ry ) (20)

Using the fact that
h=cT + pr, hy=c,T 4r and c=c,p -+ ¢, (1 —p),

and Eq. (6), we can write Eq. (20) in the form

aT 1
IIc (p—+p —+pv E)—a( k——T)+Cvﬁ(7;k—T)—2—(psv——pv+lpsv-—pvl)- @1)

Thus, the mathematical formulation of the problem under consideration includes seven partial differ-
ential equations and four algebraic equations containing the 11 unknowns g, p, p, T, Tgk, W, pu, ov, R,
¢, and pgys

the filtration equation,

ap op
Oou=—Fk,—, lpv=—kFk ;
o dax o= v ay
the transport equation for the air — vapor mixture,
Gp 6 1 6 0V -

the moisture content equation
oW -
(1—1m - =B (pp— )

274



the vapor transport equation,

a
the heat-transfer equation in the skeleton,
T _ 0T,y Ty
(1—1m) (Cskpsk+ o —(I'—H)( ax:“‘_‘]"xy 6;2 ) +

- 1 - —
+a(T—Tg) +B(pp — po, ) r + 6, B(T —Ty,) 5 PP =P+l —p

the heat-transfer equation for the air — vapor mixture,

oT oT or
Ilc -+ =a(T, —T
(p P + pv 3 \) (T, —T)+

1 _— —
+eB(Ty —7) o (Poy— PP -+ 1Py —pPP )

the algebraic relations
R=Ryp +R,(1—P), ¢=cyptca(l—p),
p=0RT, pg=[(Tsk.
It should be noted that the equation for the overall heat transfer in a porous body obtained by a term-
by-termaddition of the equations for heat transfer in the skeleton and in the air — vapor mixture.
oT

(1 —IT) (604 + 6 V) —2% aTS i

FTy PTy \- ar oT
(T, T (T T
( H)( ox? v Byz) (p”ax pay,

+Blop— p) e, (T —Ty) +1]

shows the validity of taking account of all the thermal effects in the overall energy balance. The last
term on the right-hand side of this equation characterizes the heat release during cooling of the condensed
vapor from the temperature of the mixture T to the temperature of the skeleton Tgk and the subsequent
condensation at this temperature or the available heat during the inverse process.

It was assumed that at t = 0 the quantities sought were uniformly distributed through the porous body:
P=Dpy P=py Tyu=T=T, W=W, 22)

S

The problem was solved for thermal boundary conditions of the first kind on the molding surfaces of the
porous body (I'sk = Tms). The velocity of the mixture in the direction of the normal n to the impermeable
surface of the body (subscript is) is equal to zero (wp/ijg = 0). Consequently,

|

on lis
The boundary conditions on the impermeable surface of the body for the vapor and heat-transfer equations
in the air — vapor mixture take the form of degenerate variants of these equations:

3 _ -
fn ( + pw. ‘E‘)i =(l_pis)§(psv_psvpsv) 23)
and ‘ -
ar or \| -
HC(p—E-— + 0w, ot ) i:is % (ng —D isv’ 24

where w; is the velocity of the mixture in the tangential direction r, at right angles to the direction of the
normal n;

<;‘is "a1s+ CVB (psv Pis ;is +!pis _pis;"isl)

is the reduced volumetric heat-transfer coefficient calculated from the conditions on the impermeable
surface.
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Fig. 2. Distribution of: a) skeleton tempera-
ture Tgk; b) moisture confent W; c) pressure
p for Fo = 0.8 ¢emperature is in °C, pressure
is in atm, and the moisture content is relative to
the initial value).

For the symmetry plane of a porous body (subscript sp) with the direction of the normal n we have

S| G| _ | _ T«
on iy only OnlyT on g
For a free permeable surface of a body (subscript ps) with the direction of the outward normal n the
pressure p of the air — vapor mixture must be equal to the pressure of the surrounding medium pm:

Ppg = P, (26)

= 0. (25)

This condition leads to the vanishing of the mass flux of the mixture along a permeable surface, Thebound-
ary condition for the temperature of the skeleton in this case can be written in the form

aT,
—sk. = dps (Tm— Tsk) Ips. 27
ps

where Ap is the thermal conductivity of the skeleton in the direction of the normal, and apg and Ty, are
the heat-transfer coefficient and the temperature of the medium at the permeable surfaces,

The boundary condition for the vapor transport equation is determined by the mass-transfer char-
acteristics at the permeable surface and can be written in the form

0P g = Bog (Bps — PP (28)

where wy, is the velocity of the mixture in the direction of the normal to the permeable surface. Since
according to Eq. (1)

op
prn ]ps =—Ry ‘a—’; ps, (29)
we can rewrite Eq. (29) inthe form
Bn = Op| . =" =
’_1‘7‘ pps "é‘n_ !ps - f’m ('qn_ pps)lf'nﬂ 30)

where kp is the permeability of the porous body in the direction of the normal to the permeable surface,
The boundary condition for the heat-transfer equation in the air — vapor mixture at this surface is

)
lepw, 51 (31)

nip

s= &‘ps (Tsk —T) ’ps '
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where

- 1 — =
GPS = aPS + Cvﬁ h2‘ (pSV - II]-inS + lpsv - pm)pPS ’)

is the reduced volumetric heat-transfer coefficient calculated from conditions at a permeable surface of
the porous body.

The problem formulated cannot be solved analytically. Therefore, we solved the problem by the
finite-difference method using an explicit scheme for all equations of the evolutionary type [2]. An analy-
sis of the stability of the numerical solution and the convergence of the finite~-difference scheme used gave
satisfactory results. The algorithm developed for the numerical solution was programmed in ALGOL-60
for a BESM~-6 computer.

The numerical analysis led to a rather complete picture of the time development of the heat~ and
mass-transfer processes over large ranges of the controlling parameters. The nonstationary tempera-
ture distributions of the skeleton and air — vapor mixture, the moisture content, and the pressure in the
molding process were obtained, As an example, Fig. 2 shows the temperature distribution in the skeleton,
the pressure of the mixture, and the moisture content in a porous body (chip board) for Fo = Ayt/ egkorsk ) =
0.8, where H is the half-thickness of the board.

Detailed informatjon on the parameters of the process obtained by a numerical solution of the prob-
lem makes it possible not only to judge the state of the body at any instant, but also to optimize technologi-
cal procedures for molding porous bodies.

NOTATION

X, y, coordinates; II, porosity; p, density; p, pressure; T, temperature; u,v,x,y, components of
velocity of air — vapor mixture; t, time; k, permeability; A,thermal conductivity of skeleton; ¢, specific
heat; R, gas constant; W, moisture content; h, heat content; r, heat of vaporization; ¢, volumetric
heat-release rate; «, volumetric heat-transfer coefficient; B, volumetric mass-transfer coefficient; p,
dimensionless relative partial pressure of vapor; n, direction of normal to surface; 7, tangential direc~
tion; H, half-thickness of board; 1., half-width of board; Fo, Fourier number; w, velocity of air — vapor
mixture, Indices: a, air; v, vapor; sk, skeleton; m, surrounding medium; sv, saturated vapor; mo,
moisture; n, direction of normal to surface; r, tangential direction; 0, zerotime; ms, molding surface,
is, impermeable surface; sp, symmetry plane of porous body, ps, permeable surface of porous body.
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